
20 CROSSTALK The Journal of Defense Software Engineering January 2003

We are sitting in the Chicago O’Hare
airport hours after the departure time

of a flight home. After sitting on the plane
for more than an hour, the pilot indicated
that he was unable to get one of the
engines to start. The pilot returned to the
gate, and we were allowed to deplane.
Eventually, it was determined that a hose in
the engine was malfunctioning. This single
hose was essential to the proper function-
ing of the engine. Fortunately, the engine
mechanic was able to determine the hose
that was causing the problem.

The mechanic understood the configu-
ration of the plane engine and was able to
refer to a defined list of all the engine parts,
their relative arrangement to each other,
and the methods to be used to assemble
these parts into a jet engine. This is what is
referred to as a configuration. The ability to
properly distinguish the appropriate parts
that must be used to build each type of
engine is critical to assure consistent, safe
production and use of aircraft engines.

As software developers, is it any less
critical for us to be able to manage the
assets that we create? The software we cre-
ate is often maintained in various forms,
with different tools, during its various
stages of development, usage, mainte-
nance, and operation. It is maintained at
diverse locations, in diverse formats, and by

diverse organizations. Software compo-
nents are composed of parts, which are
themselves software and are created using
tools that are also software. Software sys-
tems are made of parts that cannot be
touched, picked up, physically put in place,
or manipulated. If you lose track of one of
the software pieces, you have to re-create it.
However, if you lose track of one of the
tools, you hope that you can procure a new
one. If the tool vendor is out of business –
or no longer sells or supports the tool you
need – you have a problem.

Software Configuration
Management
Software Configuration Management
(SCM) has been defined as the art of iden-
tifying, organizing, and controlling modifi-
cations to software [1]. SCM is a process
that should be performed across the entire
software development and maintenance life
cycle. The configuration of software sys-
tems is by their nature complex. SCM may
be described as a well-defined arrangement
of software parts and the exact procedures
and tools to be used for constructing the
product or system from these parts. This
must also include procedures for recon-
structing various versions and releases [2].
The concepts of SCM are not new; numer-

ous texts have been written on the topic of
SCM. Typically SCM is defined by, and bro-
ken up into, the following four functional
areas.
• Configuration Identification.
• Configuration Control.
• Configuration Status Accounting.
• Configuration Auditing.

SCM involves identifying what software
assets are important to the organization. It
includes controlling changes to these assets
to ensure their integrity. Accounting for the
status of these assets is important to the
ongoing success of the organization. To
assure that software assets are being prop-
erly accounted for, periodic configuration
audits should be performed. Figure 1
depicts SCM’s four basic functions. An
introduction to each of these functions fol-
lows in this article.

Configuration Identification
To properly manage all the elements of an
aircraft engine, each of the critical parts
must be properly identified. This is a key
element in allowing proper management of
the various engine configurations.

To provide the proper level of configu-
ration management to software parts, we
must also identify all the items that must be
managed. These items, which we need to
identify, are referred to as configuration
items. Software configuration items (SCIs)
are the items that are determined to be
essential to manage the software product of
concern. SCIs are the objects required to
design, develop, build, maintain, test, and
field a software product. SCIs are not
things that can necessarily be shared
between organizations, or even from one
project to another. What an organization
can, and should do, is develop documented
criteria that can be consistently applied in
determining which software-related items
should be placed under configuration con-
trol.

Identification is the most important
function of SCM. This is because items
that are not identified cannot be managed.
If you need anything to create your software
product, then that item must be identified

But I Only Changed One Line of Code!

One of the basic concepts widely accepted as a software best practice is software configuration management. Although gener-
ally accepted, basic configuration management activities are often ignored, resulting in serious negative impact on software
development and acquisition projects. This article is an introduction to basic, software configuration management concepts. It
introduces these basic concepts and provides rationale for their implementation.

Dr. David A. Cook
Software Technology Support Center/Shim Enterprises, Inc.

Theron R. Leishman
Software Technology Support Center/TRW

Software
Configuration
Management

Configuration

Identific
ation

C
on

fig
ur

at
io

n
C

on
tro

l

Configuration

Status Accounting

Configuration Auditing

Figure 1: The Basic Functions of Software Configuration Management

But I Only Changed One Line of Code!

January 2003 www.stsc.hill.af.mil 21

and controlled. This includes compilers,
operating systems, libraries, development
tools, or environments. It might even
include manuals and other documentation.
It could also include such items as current
spreadsheet programs, database programs,
and word processing programs. In short, if
you need it to accomplish your develop-
ment task, then you probably should assign
an identification number to it.

Configuration Control
As an inexperienced programmer, one of
the authors of this article was approached
by the primary stakeholder of an applica-
tion for which he held maintenance respon-
sibility. The stakeholder, a very influential
individual in the company, wanted to have a
small change made to a section of the
application. Being pushed by the stakehold-
er to make the change, and being anxious to
make brownie points in the company, the
author made the simple, one line code
change.

It was not until 2:00 a.m. the next
morning, during the middle of a produc-
tion run, that it was determined that the
one line change had brought the entire
application down. Not only was this appli-
cation down, but also a critical corporate
system that required input from the appli-
cation was unable to complete essential
processing while waiting for input.

Ouch! The desire to make a good
impression in the organization backfired!
The problem was that neither the organiza-
tion nor any developers were controlling
software assets. Anyone was allowed to
make changes to the software at will. They
were then able to have the changes migrat-
ed into a production environment with lit-
tle or no unit testing, to say nothing of inte-
gration testing.

Software configuration control is the
process of controlling and limiting changes
made to software assets. According to the
Institute of Electrical and Electronics
Engineers, configuration control is an ele-
ment of configuration management con-
sisting of the evaluation, coordination,
approval or disapproval, and implementa-
tion of changes to configuration items after
formal establishment of their configuration
identification [3]. In our words, configura-
tion control is making sure that changes to
software assets are only allowed to occur
after they have been analyzed, evaluated,
reviewed, and approved by a group author-
ized to control changes to software assets.

This group of people act as gatekeepers
to control the flow of changes made to a
SCI. They have authority to approve or
veto proposed changes. This group is
known as a change control board or con-

figuration control board (CCB). The pri-
mary role of the CCB is to ensure that
every requested change to an SCI is prop-
erly considered and coordinated prior to it
being incorporated. The CCB should
include representation from program man-
agement, systems engineering, software
engineering, software quality assurance,
software configuration management, inde-
pendent test, and a customer representa-
tive.

The CCB is responsible for seeing that
all change requests are adequately reviewed,
understood, and analyzed for impact prior
to their decision to accept, defer to the next
release, or decline the change request.
Before any change to a SCI is made, the
CCB ensures that someone did the research
necessary to verify that the change will not
unexpectedly impact other SCIs. The CCB,
to make its decision, evaluates the impacts
of each proposed change, and decides if
the change is worth making.

Figure 2 presents a sample software
change control process. A software design
review board prior to the development of
an engineering change proposal (ECP)
reviews requested changes, enhancements,
or problem reports. Once developed, the

software CCB then evaluates ECP’s. This
board controls which ECP’s are approved
for incorporation into the software.
Following approval and prioritization the
change/enhancement will be made to the
software.

Configuration Status
Accounting
While attending college, one of the authors
of this article was required to endure a
course on cost accounting. In this course,
he learned that cost accounting is that part
of accounting that identifies, defines, meas-
ures, reports, and analyzes the various ele-
ments of direct and indirect costs associat-
ed with manufacturing and providing
goods or services. Companies tend to care
about things (assets) for which they have a
financial investment.

Cost accountants are expected to track
these corporate assets. They must know
what the assets are, what costs were
incurred in the development and ongoing
maintenance of the asset, how the asset
works with or interfaces with other assets,
and be able to perform analysis on and
report the status of these assets. To prop-
erly account for an organization’s assets,

Software
Change

Software
Enhancement

Problem
Report

Analyze and
Assess Impact

Engineering
Change
Proposal

Evaluate
ECP

Incorporate
Change

Verify
Change

Archive
Change

Approve
ECP

Supply
Feedback to

Originator

End

Software Configuration
Control Board

Yes No

Software Design Review Board

Figure 2: The Software Change Process

Back to Basics

22 CROSSTALK The Journal of Defense Software Engineering January 2003

accountants must track the cost of each
asset. In a manufacturing environment this
may include assets that roll into other
assets. The work, or product breakdown
must be documented and all items tracked.

SCI’s are the assets of a software prod-
uct and must likewise be accounted for.
Status accounting is the SCM activity
responsible for tracking and maintaining
data relative to each of these SCI’s. It
includes the tracking of changes to SCI’s,
and provides the ability to determine the
status of each item at any phase of the soft-
ware development or maintenance process.
Status accounting involves gathering infor-
mation to answer the following questions:
• What changes have been requested?
• What changes have been made?
• When did each change occur?
• What was the reason for each change?
• Who authorized each change?
• Who performed each change?
• What SCIs were affected by each

change?
A repository of key software assets

must be maintained to ensure that these key
assets are properly accounted for. Changes
to the status of these assets must be docu-
mented and tracked to allow the organiza-
tion to know the status of any software
asset at any point in time. Reports indicat-
ing the configuration of these software
products must be defined and generated as
a critical part of the accounting process.
Following is a list of sample reports that
the status accounting function should pro-
vide.
• Transaction log.
• Change log.
• SCI delta report.
• Resource usage report.
• SCI status report.
• Changes in progress report.
• Change request status report.
• Change completion report by develop-

er, application, etc.

Configuration Auditing
There has been much interest lately in the
integrity of certain large accounting firms
who perform independent audits of corpo-
rate books. These audits are intended to
attest to the soundness of the financial
information reported by corporations.

In a previous lifetime, one of the
authors of this article had the opportunity to
work as an internal auditor. In this role he
performed compliance audits, operational
audits, proposal audits, and other types of
audits in support of the mission of the
organization. He was labeled by one
acquaintance as Mr. Sneak & Peak.
Auditors are not widely embraced as good
guys. They are more likely considered those

who go in after the war is over and stab the
wounded.

By auditing adherence to policies,
processes, and procedures, this corpora-
tion was able to demonstrate to their gov-
ernment customer that sound practices
were consistently being followed in the
delivery of the products and services for
which the government was paying. In
addition, people are more likely to follow
the approved practices if they know some-
one is checking to see that they do. If
developers gather metrics that nobody
ever evaluates, the developers quickly learn
that the metrics can safely be ignored. By
the same token, if developers are never
held accountable, then they quickly learn
that policies, processes and procedures
can be ignored. There must be accounta-
bility.

Software configuration audits are
important for the same reasons. It is gen-
erally accepted that following good soft-
ware development practices will con-
tribute to consistent delivery of quality
software products (assets). Audits should
be conducted to help assure that software
development policies, processes, and pro-
cedures are being consistently followed
and adhered to.

In “Software Configuration Manage-
ment for Project Leaders” presented at the
1997 Software Technology Conference in
Salt Lake City, Tim Kasse explained that
configuration audits verify that the soft-
ware product is built according to the
requirements, standards, or contractual
agreement. Auditing also verifies that all
software products have been produced,
correctly identified, described, and that all
requested changes are resolved.

A software configuration audit should
be periodically performed to ensure that
the SCM practices and procedures are rig-
orously followed. The integrity of the
software baseline must be assessed. The
completeness and correctness of the soft-
ware baseline library contents must be ver-
ified. The accuracy of changes to the base-
lines must be verified to ensure that the
changes were implemented as intended. It
is recommended that a software configu-
ration audit be performed before every
major baseline change. Software configu-
ration auditing should be continuous, with
increased frequency and depth throughout
the life cycle [4].

With regard to SCM, the terms func-
tional configuration audit and physical
configuration audit are often used. A func-
tional configuration audit is intended to
verify that the software functions as
defined by the software requirements doc-
umentation. A physical configuration audit

is intended to verify that all the items iden-
tified to be included in software release are
actually included and that no additional
items are included.

Who Cares?
OK, we have said lots of nice words about
SCM, but why do you care about all this?
Findings from various software assess-
ments indicate that the lack of adherence
to basic software development and acqui-
sition sound practices continues to have a
negative cost and schedule impact of soft-
ware development, maintenance, and
acquisition projects. SCM is one of these
sound practices. Watts Humphrey said:

The most frustrating software
problems are often caused by poor
configuration management. The
problems are frustrating because
they take time to fix, they often
happen at the worst time, and they
are totally unnecessary. [5]

If any of the following situations sound
familiar to you, then you care!
• A software bug that was fixed six

months ago has suddenly reappeared.
• A programmer just spent 12 hours

making a change to the wrong version
of the software.

• There is no way to trace requirements
from the requirements document to
the user documentation and source
code.

• Two programmers working on a proj-
ect have overwritten each other’s code,
rendering the last 40 hours of each of
their work useless.

• No one can find the latest version of
the source code.

• Fielded software that was working fine
yesterday mysteriously will not work
today.

• An application installed at various
locations is running fine at some loca-
tions, but not at other locations.

• There is no way to evaluate impact on
requirements from proposed changes.

Conclusion
In short, there is no such thing as a one-
line change! Any software change is based
on some type of requirement change.
Proper identification of all the items criti-
cal to the development of software to sat-
isfy requirements is essential to meeting
those changing requirements. A supposed
one-line change requires proper identifica-
tion of what actually needs to change. It
requires analysis of how the piece of code
affected interfaces with other sections of
the code. It requires analysis of what

But I Only Changed One Line of Code!

January 2003 www.stsc.hill.af.mil 23

impact a change to the code will have on
other sections of the code. It requires
review and approval by individuals who
know and understand the application and
can determine the extended impact of the
requested change. It also requires docu-
mentation and traceability into what
change is really required, who approved
the change, when the change was made,
and why it was made. It also assumes that
someone is watching the process, that
audits are being conducted assuring that
the approved process for making changes
is being followed, and that the software
product matches the documentation.

Applying the concepts of SCM will
improve the organization’s ability to con-
trol software assets. Items and compo-
nents essential to the development and
maintenance of the software will be iden-
tified, managed, and controlled. Changes
will not be made without proper analysis
and approval. The status of software
assets will be known and traceable at all

times, and periodic audits will assure that
the process is being followed. The proba-
bility of simple software changes hugely
impacting projects will be greatly
reduced.◆

References
1. Babich, Wayne A. Software Configura-

tion Management. Mass.: Addison-
Wesley, 1986.

2. Ben-Menachem, Mordechai. Software
Configuration Management Guide-
book. London: McGraw-Hill, 1994.

3. Institute of Electrical and Electronics
Engineers. “Glossary of Software
Engineering Terminology.” IEEE Std-
610.12-1990. New York: IEEE, 1993.

4. Kasse, Tim. Proceedings of The 9th
Annual Software Technology Confer-
ence. Salt Lake City, UT. Software
Technology Conference, 1997.

5. Humphrey, Watts. Managing the
Software Process. Addison-Wesley,
1989.

About the Authors

David A. Cook, Ph.D.,
is the principal engineer-
ing consultant, Shim
Enterprises, Inc. He is
currently assigned as a
software-engineering

consultant to the Software Technology
Support Center at Hill Air Force Base,
Utah. Dr. Cook has more than 27 years
of experience in software development
and software management. He was for-
merly an associate professor of comput-
er science at the U. S. Air Force Academy
and also the deputy department head of
the Software Professional Development
Program at the Air Force Institute of
Technology. Dr. Cook has published
numerous articles on software process
improvement, software engineering,
object-oriented software development,
programming languages, and require-
ments engineering. He has a doctorate
degree in computer science from Texas
A&M University, and he is an authorized
Personal Software Process instructor.

Software Technology Support Center
7278 4th Street
Bldg. 100
Hill AFB, UT 84056
Phone: (801) 775-3055
Fax: (801) 777-8069
E-mail: david.cook@hill.af.mil

Theron R. Leishman
is a consultant currently
on contract with the
Software Technology
Support Center at Hill
Air Force Base, Utah.

Leishman has 18 years experience in
various aspects of software develop-
ment. He has successfully managed
software projects and performed con-
sulting services for the Department of
Defense, aerospace, manufacturing,
health care, higher education, and other
industries. This experience has provided
a strong background in systems analysis,
design, development, project manage-
ment, and software process improve-
ment. Leishman has a master’s degree in
business administration from the
University of Phoenix. He is a Level 2
Certified International Configuration
Manager by the International Society of
Configuration Management, and is
employed by TRW.

Software Technology Support Center
7278 4th Street
Bldg. 100
Hill AFB, UT 84056
Phone: (801) 775-5738
Fax: (801) 777-8069
E-mail: theron.leishman@hill.af.mil

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUL2001 " TESTING & CM

AUG2001 " SW AROUND THE WORLD

SEP2001 " AVIONICS MODERNIZATION

JAN2002 " TOP 5 PROJECTS

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF.

JUN2002 " SOFTWARE ESTIMATION

AUG2002 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

OCT2002 " AGILE SOFTWARE DEV.

NOV2002 " PUBLISHER’S CHOICE

DEC 2002 " YEAR OF ENG. AND SCI.

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

